Post-Deepwater Horizon Oil Spill Monitoring of Louisiana Salt Marshes Using Landsat Imagery
نویسندگان
چکیده
The Deepwater Horizon oil spill, the second largest marine oil spill in history, contaminated over a thousand kilometers of coastline in the Louisiana salt marshes and seriously threatened this valuable ecosystem. Measuring the impacts of the oil spill over the large and complex coast calls for the application of remote sensing techniques. This study develops a method for post-Deepwater Horizon oil spill monitoring of the damaged marsh vegetation using Landsat imagery. This study utilizes 10 years of Landsat data, from 2005 to 2014, to examine the longevity of the oil spill’s impacts on the marsh vegetation. AVIRIS data collected between 2010 and 2012 are used to validate the Landsat results. Landsat imagery documents the significant effect of oiling on the Normalized Difference Vegetation Index (NDVI) of the marsh vegetation in 2010 and 2011 (p < 0.01 in both cases). These results are corroborated by the AVIRIS data, which recorded the most severe impact in May 2011 followed by progressive recovery in October 2011 and October 2012. The Landsat imagery, combined with relevant environmental information and appropriate statistical tools, provides a robust and low-cost method for long-term post-oil spill monitoring of the marshes, revealing that the major aboveground impacts (at 30 m scale) of the Deepwater Horizon oil spill on Louisiana salt marshes lasted for two years. The method presented is applicable for other hazardous events whenever pre-event referencing and long-term post-event monitoring are desired, thereby offering an effective and economical tool for disaster management.
منابع مشابه
Population Dynamics and Community Composition of Ammonia Oxidizers in Salt Marshes after the Deepwater Horizon Oil Spill
The recent oil spill in the Gulf of Mexico had significant effects on microbial communities in the Gulf, but impacts on nitrifying communities in adjacent salt marshes have not been investigated. We studied persistent effects of oil on ammonia-oxidizing archaeal (AOA) and bacterial (AOB) communities and their relationship to nitrification rates and soil properties in Louisiana marshes impacted ...
متن کاملThresholds in marsh resilience to the Deepwater Horizon oil spill
Ecosystem boundary retreat due to human-induced pressure is a generally observed phenomenon. However, studies that document thresholds beyond which internal resistance mechanisms are overwhelmed are uncommon. Following the Deepwater Horizon (DWH) oil spill, field studies from a few sites suggested that oiling of salt marshes could lead to a biogeomorphic feedback where plant death resulted in i...
متن کاملDegradation and resilience in Louisiana salt marshes after the BP-Deepwater Horizon oil spill.
More than 2 y have passed since the BP-Deepwater Horizon oil spill in the Gulf of Mexico, yet we still have little understanding of its ecological impacts. Examining effects of this oil spill will generate much-needed insight into how shoreline habitats and the valuable ecological services they provide (e.g., shoreline protection) are affected by and recover from large-scale disturbance. Here w...
متن کاملDetection of Oil near Shorelines during the Deepwater Horizon Oil Spill Using Synthetic Aperture Radar (SAR)
During any marine oil spill, floating oil slicks that reach shorelines threaten a wide array of coastal habitats. To assess the presence of oil near shorelines during the Deepwater Horizon (DWH) oil spill, we scanned the library of Synthetic Aperture Radar (SAR) imagery collected during the event to determine which images intersected shorelines and appeared to contain oil. In total, 715 SAR ima...
متن کاملImpact of the 2010 Deepwater Horizon oil spill on population size and genetic structure of horse flies in Louisiana marshes
The greenhead horse fly, Tabanus nigrovittatus Macquart, is frequently found in coastal marshes of the Eastern United States. The greenhead horse fly larvae are top predators in the marsh and thus vulnerable to changes in the environment, and the adults potentially are attracted to polarized surfaces like oil. Therefore, horse fly populations could serve as bioindicators of marsh health and tox...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017